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We are concerned with the problem of finding the polynomial with minimal
uniform norm on rff among all polynomials of degree at most n and normalized to
be 1 at c. Here, rff is a given ellipse with both foci on the real axis and c is a given
real point not contained in rff. Problems of this type arise in certain iterative matrix
computations, and, in this context, it is generally believed and widely referenced
that suitably normalized Chebyshev polynomials are optimal for such constrained
approximation problems. In this work, we show that this is not true in general.
Moreover, we derive sufficient conditions which guarantee that Chebyshev polyno­
mials are optimal. Also, some numerical examples are presented. © 1991 Academic

Press, Inc.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let Iln be the set of all complex polynomials of degree at most n. For
r> 1, we denote by

iffr := {ZEiC liZ-II + Iz+ 11 :s;r+H
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the ellipse with foci at ± 1 and semi-axes

a '=~(r+~)
r' 2 r'

In this work, we study the constrained Chebyshev approximation problem

min max Ip(z)l,
pElln :p(c)~ 1 ZE.ff,

(1)

where n EN, r> 1, and c E IR\@';.. Standard results from approximation
theory (see, e.g., [9]) show that there always exists a unique optimal poly­
nomial, denoted by Pn(z; r, c) in the sequel, for (1) and, moreover, that Pn
is a real polynomial. In 1963, Clayton [3] proved that pAz; r, c) is just the
polynomial

(2)

where

(3)

denotes the nth Chebyshev polynomial. The approximation problem (1)
arises in certain iterative matrix computations (see, e.g., [2, 5]). In this
context, Clayton's result is widely referenced in the literature (e.g.,
[2, 5, 8, 12, 13]) and is even used to derive new results on constrained
approximation problems [1]. Surprisingly, nobody seems to have checked
Clayton's proof.

In this note, we show that the normalized Chebyshev polynomials (2)
are not always optimal for (1), and hence Clayton's result is not true in
general. More precisely, we have the following

THEOREM 1. (a) Let r> 1 and c> ar or c < -ar • Then, for
n= 1, 2, 3, 4, tAz; c) is the unique optimal polynomial for (1).

(b) For any integer n;:' 5 there exists a real number r* = r*(n) > 1
such that tn(z;c) is not optimal for (1) for all r>r* and all eEIR with
ar < lei ~ ar + lla;.

However, tn== Pn in most cases, and tn ceases to be optimal only for nor­
malization points e which are very close to the ellipse. We show that the
following conditions on c are sufficient to guarantee the optimality of til"
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THEOREM 2. Let n ~ 5 be an integer, r> 1, and e E R Then, tn(z; e) is the
unique optimal polynomial for (1) if

(a) lei ~ !(rfi + r- fi ) or

(b) lei ~ (1/2a, )(2a; - 1+ J2a: - a; + 1).

Remark 1. In general, the conditions (a) and (b) do not imply each
other. In particular, (a) (resp. (b)) is less stringent for small r (resp. large
r). Also, note that (b) is satisfied if lei ~ (l + j212)a,.

The paper is organized as follows. In Section 2, we state a necessary and
sufficient criterion for t n to be optimal for (1). Also some auxiliary results
are collected which are used in Section 3 and 4 to prove Theorem 1 and 2,
respectively. Finally, in Section 5, we present some numerical examples.

2. PRELIMINARIES

In the sequel, let always r> 1 and n EN. Since Pn(z; r, -e) == Pn( - z; r, e)
it is sufficient to consider positive e only; so for the rest of the paper, we
assume that e> a,.

First, we determine the extremal points z/ of tn defined by

!tAz/; e)1 = max Itn(z; e)l,
ZES,

With (3), one easily verifies that there are 2n such points given by

cp/:= Inln, 1= 1, ..., 2n.

Moreover, note that tn(z/; e) = (-1)/ Tn(a,)ITn(e). Using Rivlin and
Shapiro's characterization [10] of the optimal solution of general linear
Chebyshev approximation problems, we deduce that tn== Pn iff there exist
nonnegative real numbers (f/, 1= 1, ... , 2n (not all zero), such that

2n

L (f/( -1)/ q(z/) = 0
1= 1

forall qEJIn with q(e)=O. (4)

By solving this linear system explicitly, one arrives at the following

LEMMA 1. The polynomial tn in (2) is optimal for (l) iff (f/ ~ 0 for
1= 1, ..., 2n, where
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Proof The result is a special case of Theorem 3 in [4], where we
investigated the approximation problem (1) in the more general setting
of complex c. On the other hand, by using the polynomials
q(z) = Tk(z) - Tdc), k = 1, ..., n, as a basis in (4), it is also straightforward
to verify directly that the (J I given by (5) satisfy (4) and that these are up
to a constant factor the only solutions of (4). I

Remark 2. Clearly (J 2n > 0 and, moreover, (J1= (J 2n -I' Hence, til is
optimal iff (J I ~ 0 for 1= 1, ... , n.

The following result due to Rogosinski and Szego [11] is used in the
next section to establish a sufficient condition for the positivity of the (JI'

LEMMA 2. Let AD, AI' ..., An be real numbers which satisfy An ~ 0,
An _ J - 2An~ 0, and Ak _ 1 - 2Ak + Ak + 1 ~ 0 for k = 1, 2, ... , n - 1. Then

for all <P E IR. (6)

We close this section with the following technical lemma. The proof is
straightforward and omitted here.

LEMMA 3. (a) Let kE N. Then

~ 2 (j-1/2)n
L.. cos k

)=1

if k= 1

if k~2.

and

(b) Let 2~ I~ n be an even integer and <P1= In/n. Then

n-I

L cos(k<p,)=O
k~O

n-I

L k cos(k<p{) = -n/2.
k=1

3. PROOF OF THEOREM 1

(7)

(8)

Let r> 1 be fixed and set a := ar • Then, for each I, (5) defines a poly­
nomial (J I (c) = (J I in c of degree n. Therefore,
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First, we prove part (b) of Theorem 1. Let n ~ 5 and 2 ~ I ~ n be an even
integer. With (5) and (7), it follows that

(
1 n--l)

oAa)=(-I)/ -(1+(-1)/)+ L cos(k<p/) =0.
2 k= 1

Furthermore, we derive from (5) that

(10)

(11 )

Let ~y) = cos( (2) - 1) nl(2k )),} = 1, ..., k, denote the zeros of Tk. Then,

T k' (a) k 1 00 1 k
" " _ " (~(k))mT(a)=.L. a_):(k) L, am+1 L, }

k J~l 'oj m~O j~l

= ~ _1_ ~ (~(k))2m
L, a2m+ 1 L, )

m=O j~ 1

if k= 1

if k ~ 2.
(12)

Here, we used the fact that T~/Tk is an odd function and part (a) of
Lemma 3. With (8), (11), and (12), it follows that

1 (In) 1 ( 1 )();(a) = --cos - -+0 - .
2 n a3 as

Combining (9), (10), and (13) yields

(
1 (In) 1 ( 1 ) n ()V)(a)_l)()/(c) = (c - a) -- cos - -+ 0 - +" -.- (c- a)1
2 n a3 as j:-2 ) !

(13)

and, finally, since, given (5) and Tj!)(a)ITk(a) = O(Ila j ), for}~ 2 we have
()~j)(a) = 0(1/a 2

),

Thus, ()/(c)<O and, therefore, (2) is not the optimal polynomial for (1), if
c - a ~ Ila 2, a is sufficiently large, and cos(lnln ) > 0, i.e., 1< n12. Note that
even I with 2 ~ 1< nl2 exist, since n ~ 5. This concludes the proof of
part (b) of Theorem 1.

We now turn to the proof of part (a) of Theorem 1. Let r > 1 and
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c>a=ar be fixed. Moreover, set A k := Tk(c) and ak:= Tk(a). Then, m
view of Lemma 1 and Remark 2, one needs to check the positivity of

1= 1, ..., n, (14)

for the four cases n = 1, 2, 3,4. For n = 1, 2 this is clearly true, since

and

Next, consider n=3. It is easily verified that A 3 /a 3 >A I /a l , and hence

By using that T2(c) T2(a) + co is a monotonously increasing function in c
for c ~ 0 ~ 1, we deduce that

0"~3) =~ (A 3 _ A2 _ Al + 1)
2 03 02 01

= (c - 0) (2T2(C) T 2(a) + 2ca + 1-1)
20 (4a 2 - 3 )(2a2- 1)

2a(c -a) 0
~(402-3)(202-1» .

Similarly, one obtains

(3) 1 A 3 A 2 A I 1
0"3 =----+---

2 03 O2 0 1 2

= (c-O)(4(C
2
+2ca+02 )-3

a 2(4a2
- 3)

(c - a)(16a4 -18a2+ 9) 0
~ 2 2 > .

2a(40 -3)(2a -1)

Finally, we turn to the case n = 4. Analogously to the case n = 3, 1= 1,

(Jl4)=~(A4_1)+ fi(A 3 _A I »O.
2 a4 2 03 a l
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For 1=2, we have

(4)_~(A4_2A2 1)_(A2-a2)(A2a2-a~+I) 0
(12 - + - 2 > .

2 a4 a2 a2(2a 2- 1)

The positivity of (1~4) follows from

(J~4) _ 1 (A 4_ 1 _ I2(A 3_A 1))

2(e2- a2) - 4(e2- a2) a4 v'':' a3 al

2(e2+ a2-1) fie
8a4- 8a2+ 1 a(4a2- 3)

8(2- fi)a 4 + 4(2 fi - 5)a2 +6 - fi 0
~ (8a4-8a2+ 1)(4a2-3) > .

267

(15 )

(16)

Here we have used that (15) is a monotonously increasing function in e for
e ~ 1 and that the numerator in (16) has no real zero. Similarly, by a
routine, but lengthy, computation, one verifies that

a2a3 a4 (J~4)= a2a3 a4 (~A4_ A3+ A2_ Al+~)
2(e-a) 2(e-a) 2 a4 a3 a2 a 1 2

= (2e2- 1)((e - a)a3+ a2)a2

+ «e(4a2-1) - a3)(a2- l)a - a2)(a2 - 1)

~ a2(4a4- 6a2+ 3) + 2a2(a2 _1)2> O.

This concludes the proof of part (a) of Theorem 1.

4. PROOF OF THEOREM 2

Let r> 1 and e > a := a, be fixed. Note that a and e have the representa­
tions

R>r. (17)

With (3) and (17), one obtains

Tk(e) R k + l/Rk

Tda)= rk+l/rk =f(CPk)'

where we set

(18)

f(
cosh((log R) ncp/rr)

cp) .= ---'-'---==---'----'-.:....---:.
. cosh((log r) ncp/rr) ,

krr
CPk :=-.

n
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Since f is continuous, bounded, and even, it can be expanded into the
Fourier series

1 00

f( cP ) = "2 1X 0 + I IX} cos(jcp ),
}~I

By rewriting the expression (5) for (J/ in terms of (18) and, subsequently,
using the discrete orthogonality relations of COS(lCPk), k, 1=0, ..., n (see, e.g.,
[7, p. 472]), we get

(
1 n-I)

(J/ = (-1)' 2" (/(0) + (-1)' f(n» + k~1 f( CPk) COS(lCPk)

= {~( -1 )/' (a,+ m~, (a'm"-' +a,~+,)) for {~I, ..., n-l

(
" ) for 1= n.n( -1) IXn +m":,l 1X2(m+lln

It follows that all (J/ ~ 0 and, in view of Lemma 1, that the normalized
Chebyshev polynomials (2) are optimal for (1), if the Fourier coefficients
IX) of f satisfy

j= 1, 2, .... (19)

It is well known (see, e.g., [6, Theorem 35]) that (19) holds true iffis a
convex function. Hence, in order to prove that the condition (a) in
Theorem 2 guarantees the optimality of the polynomial (2) for (1), it
only remains to show that (a) implies the convexity of f Since f is even,
we only need to consider cP ~ O. Moreover, set x:= (log r) ncp/n and
y := log R/log r> 1. Then, using standard calculus, we obtain

cosh(x) (_n_)2 f"(cp)
cosh(yx) n log r

=y2 _ 1- 2y tanh(x) tanh(yx) + 2 tanh 2(x)

~ y2 _ 1 - 2y tanh(x) + 2 tanh 2(x)

~y2_1 +2 min y(y-y)
O";;y,,;;1

if y > 2

if y ~ 2.
(20)

Therefore, (20) is nonnegative, and thus f convex, if y ~ j2. This last
condition is easily seen to be equivalent to the condition (a) in Theorem 2.
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Remark 3. The main idea of the proof, namely, to verify the positivity
of the (Jf via the convexity off, is due to Clayton [3]. However, in [3], it
is claimed that f is convex in all cases R> r > 1. Unfortunately, this is not
true in general.

Now, assume that condition (b) of Theorem 2 is fulfilled. Again, we use
the notations A k = Tk(c) and ak = Tk(a). Note that, by the three-term
recurrence formula of the Chebyshev polynomials,

Next, set

k = 1, 2, .... (21 )

and, for k = 1,2, ..., n - 1, (22)

and let s( qJ) be the trigonometric polynomial defined by (6). With (5) and
(6), one readily verifies that (J f = s(ln/n), and, in view of Lemmas 1 and 2,
we conclude that the polynomial (2) is indeed optimal for (1) if the
numbers (22) satisfy

)'n ~ 0, An-l - 2An~ 0, and,

for k=I, ...,n-l, Ak-1-2Ak+Ak+I~0.
(23)

The first condition in (23) is trivially true, and the second one follows from
AI> a l . Using (22), the remaining inequalities in (23) can be rewritten in
the form

and

(24)

for j = 2, ... , n - 1. (25)

A simple calculation shows that (24) is equivalent to

(26)

which is just condition (b). For the proof of Theorem 2, it only remains to
show that (26) also implies (25). Letj~2. First, by using (21), we deduce
that
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( (
C 1) 1(1 1)) Aj _ Z ( 1 1)=A 2 --- +- --- +-- ----

} aj+1 aj 2c aj _ 1 aj+1 2c aj _ 1 aj +1

Next, set

and note that Qj attains its minimum at aj+1/(2aj )< c*. Hence, in view of
(27), (25) holds true, if Qj(c*);;;, 0 is fulfilled. This is indeed the case, and
we show by induction that

j=2, 3, ....Qj(C*);;;'Qz(c*);;;'O,

For j = 2, this follows with

Qz(c*) = 4(c*)Z aza - 4c*a3a + aZ(a3- a)

=a- l (a z(2a 4
- 3az + 2) - (a z-1) JaZaz + 1);;;' 0,

(28)

since j2az;;;' Ja2az+ 1 and 2a4
- 3az + 2;;;, j2(az -1) for a;;;' 1. Finally,

if (28) holds true for j, a routine, but lengthy, calculation shows that

Qj+ I(C*) - Qj(c*)

= (az -1) ( -4(c*)Z a + 2c* a~:z + a) + Cja:
z-1) Qj(c*)

;;;,(az -1)( -4(c*)Za+2c*::+a)+(::-1)Qz(C*)

= (az -1 )(2(Qz(c*) - c*) + a3 );;;' 0

(note that aj+z/aj ;;;'a4 /a Z)' Therefore, (28) is also satisfied for j+ 1, and
this completes the proof of Theorem 2.

5. SOME NUMERICAL EXAMPLES

In order to illustrate the range of parameters for which the normalized
Chebyshev polynomials (2) are not optimal for the approximation problem
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TABLE I

The numerically computed values of r* := r*(n) and the corresponding semi-axes a,_ and
b,_ of the ellipse eIf,_ are listed for n = 5, 6, ..., 20

n r* a,_ b,_ n r* a,_ b,_

5 2.6492 1.5133 1.1359 13 1.3402 1.0432 0.2970
6 2.0588 1.2723 0.7865 14 1.3111 1.0369 0.2742
7 1.8006 1.1780 0.6226 15 1.2867 1.0319 0.2547
8 1.6490 1.1277 0.5213 16 1.2658 1.0279 0.2379
9 1.5476 1.0969 0.4508 17 1.2478 1.0246 0.2232

10 1.4745 1.0764 0.3982 18 1.2321 1.0219 0.2103
11 1.4191 1.0619 0.3574 19 1.2183 1.0196 0.1988
12 1.3755 1.0512 0.3242 20 1.2061 1.0176 0.1885

(1), we present a few numerical examples. Let r* = r*(n) denote the
smallest r> 1 such that for all r> r* there exists a real number c(r, n) > ar

such that for all ar < c < c(r, n) the polynomial (2) is not best possible in
(1). For later use, let us denote by c*(r, n) the maximal c(r, n) with this
property. Recall that in view of Theorems 1 and 2, 1 < r*(n) < 00 exists for
all integers n ~ 5. In Table I, the numerically computed values of r*(n) and
the corresponding semi-axes of 8r• are listed for 5::::; n ::::; 20. Note that r*(n)
tends to 1 as n increases.

The case where the normalized Chebyshev polynomials (2) are not
optimal for (1) occurs only for c close to the ellipse. In Fig. 1, for the cases

am r-----.----..--,..----.------,..--,.-----.---,

4.543.52.521.5

0.009 /'---\\,

~~ rt\\\\
o.~ J..fl···
0.003 Ii !

n !
0.002 il i
0.001 !I !

a Ii i

FIG. 1. The functions In(a,) := (c*(r, n) - a,)/a, are plotted in the range 1 'i; ar 'i; 5 for the
cases n = 5 (solid line), n = 7 (dashed line), n = 10 (dash-dotted line), and n = 15 (dotted line).
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n = 5 (solid line), n = 7 (dashed line), n = 10 (dash-dotted line), and n = 15
(dotted line), the curves

c*(r, n) - ar

ar

are plotted as functions of ar •

For some cases for which (2) is not optimal for (l), we computed the
best polynomials numerically. We were not able to detect any analytic
representation of these polynomials.
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